Connections: Science as Inquiry and the Conceptual Framework for Science Educationⁱ

		1 Cooperative Learning	2 EEEPs	3 Fuzzy Situations	4 Active Learning	5 Projects	6 Internet	7 Project Ozone	8 Assessment	9 Earth Science Activities	10 Environmental Science Activities	11 Life Science Activities	12 Physical Science Activities
				DIME				E IDEA	S				
					L	IFE SCI	ENCE						
LS1	Organisms have structures and functions that facilitate their life processes, growth, 4 and reproduction. (From Molecules to Organisms – Structures and Processes)											X	
LS2	Organisms have mechanisms and processes for passing traits and variations of traits from one generation to the next. (Heredity Inheritance and Variation of Traits)											X	
LS3	Organisms and populations of											Х	

	organisms obtain necessary resources from their environment which includes other									
	organisms and physical factors. (Ecosystems: Interactions, Energy, and Dynamics)									
LS4	Biological evolution explains the unity and diversity of species. (Biological Evolution: Unity and Diversity)								X	
			-	EA	ND SPA	CE SCI	ENCES			
ES1	Humans are a small part of a vast Universe; planet Earth is part of the Solar System, which is part of the Milky Way galaxy, which is one of hundreds of billions of galaxies in the Universe. (The Solar System, Galaxy, and Universe)							X		
ES2	Earth is a complex and dynamic 4.6- billion-year-old system of rock, water, air, and life. (Earth's Planet-sized Structures, Processes	Х	Х	X				Х		

	and History)												
ES3	Earth's surface continually changes			Х					Х	Х	Х		
	from the cycling of												
	water and rock driven by sunlight and												
	gravity. (Earth's												
	Surface Processes												
	and Changes)												
ES4	Human activities are	Х	Х	Х						Х	Х		
	constrained by and, in												
	turn, affect all other processes at Earth's												
	surface. (Human												
	Interactions with												
	Earth)												
					PHYS	ICAL S	CIENCI	ES				1	
PS1	Macroscopic states and characteristic		Х										Х
	properties of matter												
	depend on the type,												
	arrangement and												
	motion of particles at												
	the molecular and												
	atomic scales.												
	(Structure and Properties of Matter												
PS2	Forces due to												X
	fundamental												
	interactions underlie												
	all matter, structures												
	and transformations;												
	balance or imbalance of forces determines												
	stability and change												
	orability and onalige												

	within all systems.									
	(Interactions,									
	Stability, and									
	Change)									
PS3	Transfers of energy				Х			Х		Х
	within and between									
	systems never									
	change the total									
	amount of energy, but									
	energy tends to									
	become more									
	dispersed; energy									
	availability regulates									
	what can occur in any									
	process. (Energy and									
	its Transformations)									
PS4	Our understanding of									X
1 0 4	wave properties,									
	together with									
	appropriate									
	instrumentation,									
	allows us to use									
	waves, particularly									
	electromagnetic and									
	sound waves, to									
	investigate nature on									
	all scales, far beyond									
	our direct sense									
	perception. (Waves									
	as carriers of energy									
	and information)		ENC	INEEDU		тесн	NOLOGY			
ET4			ENG	INEERII		TECH	NOLOGY			X
ET1	The study of the				Х					$\overline{\lambda}$
	designed world is the									
	study of designed									

	systems, processes, materials and products and of the technologies and the scientific principles by which they function. (The Designed World)									
ET2	Engineering design is a creative and iterative process for identifying and solving problems in the face of various constraints. (Engineering Design)		x		Х					Х
ET3	People are surrounded and supported by technological systems. Effectively using and improving these systems is essential for long- term survival and prosperity. (Technological Systems)	Х				Х	Х			Х
ET4	In today's modern world everyone makes technological decisions that affect or are affected by technology on a daily basis. Consequently,		Х			X	Х			Х

	it is essential for all citizens to understand the risks and responsibilities that accompany such decisions. (Technology and Society)												
		DI						ING E		NTS			
				CROSS	-CUTTI	NG SCIE	NTIFIC	CONCE	PTS				
1	Patterns, similarity, diversity							Х		Х	Х	Х	Х
2	Cause and effect	Х	Х					Х		Х	Х	Х	Х
3	Scale, proportion, quantity									Х	Х	Х	Х
4	Systems and models					Х		Х		Х	Х	Х	Х
5	Energy and mater: flows and cycles		Х							Х	Х	Х	Х
6	Form and function									Х	Х	Х	Х
7	Stability and change									Х	Х	Х	Х
		TOPI	CS IN S	CIENC	E, ENGI	NEERIN	G, TEC	HNOLG	Y AND S	OCIETY			
1	History and cultural roles	Х		Х	X								
2	Impacts of science, engineering and technology on society			Х									Х
3	Professional responsibilities of scientists							Х		Х	Х	Х	Х
4	Roles of Scientific and Technical Knowledge in Personal Decisions	Х		Х				Х					
5	Careers							Х		Х	Х	Х	Х

	DIMENSION 3: SCIENTIFIC AND ENGINEERING PRACTICES														
	HOW SCIENTISTS AND ENGINEERS WORK														
1	Investigation, hypothesis and coordination	Х			Х	X		Х		Х	Х	X	Х		
2	Models	Х						Х		Х	Х	Х	Х		
3	Communication and discourse	Х		Х	Х	Х				Х	Х	Х	Х		
	PRACTICES FOR SCIENCE CLASSROOM														
1	Asking questions	Х						Х		Х	Х	Х	Х		
2	Modeling	Х	Х		Х	Х				Х	Х	Х	Х		
3	Devising testable hypothesis	Х	Х					Х		Х	Х	Х	Х		
4	Collecting, analyzing and interpreting data	Х						Х		Х	Х	Х	Х		
5	Constructing and critiquing arguments	Х		Х				Х		Х	Х	Х	Х		
6	Communicating and interpreting scientific and technical texts	Х						Х		Х	Х	X	Х		
7	Applying and using scientific knowledge		Х					Х		Х	Х	Х	Х		

ⁱ This chart is an overview of the connections between *Science as Inquiry*, and the *Conceptual Framework for Science Education* which, was published in 2011 by the National Research Council. This chart was based on the Draft version of the Framework. If changes appear in the final version, they will be updated on the Science as Inquiry website at http://www.science-as-inquiry.org/. The final published version of the Conceptual Framework will be the basis for a new set of Science Education Standards which will be developed by Achieve, Inc., the organization that developed the Common Core Standards. Inquiry-oriented teachers are challenged to confront the current trend that advocates a standards-based and high stakes testing paradigm. As can be seen in this analysis, Science as Inquiry is in accord with the Conceptual Framework. However, the author's concern is that the framework will be used to create standards that will lead to high-stakes National testing paradigm. For further information on the Conceptual Framework for Science Education, please consult: http://www7.nationalacademies.org/bose/Science_Standards_Framework_Homepage.html/.